Refine Your Search

Topic

Search Results

Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Experimental Study of Catalyzed Diesel Particulate Filter with Exhaust Fuel Injection System for Heavy-Duty Diesel Engines

2014-04-01
2014-01-1496
The diesel particulate filter (DPF) is an effective technology for particulate matter (PM) and particle number (PN) reduction. On heavy-duty diesel engines, the passive regeneration by Diesel Oxidation catalysts (DOC) and catalyzed DPFs (CDPF) is widely used for its simplicity and low cost, which is generally combined with the active regeneration of exhaust fuel injection. This study investigated a DOC-CDPF system with exhaust fuel injection upstream of the DOC. The system was integrated with a 7-liter diesel engine whose engine-out PM emission was below the Euro IV level and tested on an engine dynamometer. PM and PN concentrations were measured based on the Particle Measurement Programme (PMP), and the number/size spectrum for particles was obtained by a Differential Mobility Spectrometer (DMS). The filtration efficiency of DPF on PN was higher than 99% in ESC test, while the efficiency on PM was only 58%.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

Numerical Simulation of Ammonia-Hydrogen Engine Using Low-Pressure Direct Injection (LP-DI)

2024-04-09
2024-01-2118
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency.
X